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ABSTRACT: The mass anomaly time series, derived from the monthly time-variable gravity fields of the Gravity 
Recovery and Climate Experiment (GRACE) and its follow-on mission (GRACE-FO), contain various deterministic 
signals such as long-term trends, annual and semi-annual signals. Singular spectrum analysis (SSA) is a data-driven 
method that effectively decomposes the time series into components ordered by variance intensity. However, the dozens 
of missing epochs in the monthly gravity product of GRACE and GRACE-FO impede the time series analysis. Besides, 
ordinary SSA does not consider the heterogeneity of mass anomaly time series (Level-3 products) inherited from the 
heterogeneity of the spherical harmonic coefficients (Level-2 products). To address these issues, we propose using 
extended singular spectrum analysis (ESSA) to extract the deterministic signals presented in the mass anomaly time series. 
Two well-studied areas (Qinghai-Tibet Plateau and Yangtze River Basin) are selected for analysis, utilizing the CSR 
RL06 mascon products and personal-computed mascon solutions from April 2002 to December 2022. Experimental 
results demonstrate that the ESSA successfully extracts dominant desired signals from the incomplete and heterogeneous 
mass anomaly time series. We compare the results from ESSA with those from improved SSA (ISSA) that handles 
incomplete time series by minimizing the quadratic norm of principal components using available observations. The 
comparison reveals that the ESSA approach outperforms the ISSA approach, exhibiting smaller fitting errors and higher 
root-mean-square ratios of extracted signals to residuals. Repeated simulations indicate that the signals extracted by ESSA 
are closer to the simulated true signals. Furthermore, the consideration of formal errors of time series indeed improves 
the filtering process. Notably, the ESSA approach also allows for retrospectively filling in the data gaps between the 
GRACE and GRACE-FO missions by taking the elements of extracted signals at the missing epochs.  
 
1. INTRODUCTION 

The Gravity Recovery and Climate Experiment (GRACE) and its subsequent GRACE-FO missions have been 
specifically designed to monitor the global gravity field with unprecedented spatiotemporal resolution (Tapley et al., 
2004). The monthly gravity field models derived from these missions offer novel insights into various domains, including 
total water storage change (Syed et al., 2008; Landerer & Swenson, 2012), hydrological mass variations (Scanlon et al., 
2016), sea-level change (Lombard et al., 2007; Yi et al., 2017), as well as polar and alpine ice melting (Baur & Sneeuw, 
2011; Forsberg, 2017). The GRACE mission was operational from April 2002 until June 2017, whereas the GRACE-FO 
satellites were launched in early 2018 and initially provided data products in June of the same year. Consequently, there 
exists an 11-month gap between the GRACE and GRACE-FO missions, which poses a challenge to the continuous 
extraction of geophysical information.  

The monthly mass anomaly time series derived from GRACE/GRACE-FO time-variable gravity fields contains 
abundant geophysical signals, such as long-term trends, annual oscillations, and semi-annual oscillations. These signals 
are highly correlated with various geophysical processes, such as precipitation, glacier melting, atmospheric pressure 
variations, and crustal activities (Chen et al., 2020; Velicogna et al., 2020). Singular spectrum analysis (SSA) is a data-
driven method that can decompose the time series into several components ordered by variance (Vautard & Ghil, 1989). 
However, ordinary SSA assumes the time series is complete, which is invalid for GRACE/GRACE-FO observations. 
Although data gaps can be filled using interpolations beforehand (Wang et al., 2021; Yi & Sneeuw, 2021; Mo et al., 2022), 
interpolating large gaps may distort spectral peaks significantly (Kay & Marple, 1981). Another approach is to analyze 
incomplete time series using available data directly. Schoellhamer (2001) proposed the modified SSA (SSAM) to 
compute the principal components (PCs) with the observed data and the scalar factor related to the number of missing 
data; Shen et al. (2015) developed an improved SSA (ISSA) to compute the PCs by minimizing the quadratic form of 
PCs. It is proved that ISSA is a generalized version of SSAM. Recently, Ji et al. (2023) proposed the extended SSA 
(ESSA) approach, which can directly filter incomplete geodetic time series based on the optimal low-rank approximation. 
They demonstrated the superior performance of the ESSA approach over the ISSA approach with real Global Navigation 
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Satellite System (GNSS) position time series and synthetic time series.  Moreover, the ESSA approach can also be used 
to process heterogeneous time series by considering the formal errors of time series. Actually, the mass anomaly time 
series, derived from the heterogeneous spherical harmonic coefficients (SHCs) (Shen et al., 2021), is typically 
heterogeneous. However, this heterogeneity has not been considered in previous signal analysis. In this paper, we employ 
the ESSA approach to analyze the incomplete and heterogeneous mass anomaly time series derived by time-variable 
gravity fields from GRACE/GRACE-FO measurements. The rest of the paper is organized as follows. Section 2 briefly 
introduces the ESSA approach; Section 3 presents the analytical results of the ESSA approach on two well-studied areas 
and compares them with ISSA. Some conclusions are summarized in Section 4. 
 
2. METHODOLOGY 

In this section, we provide a brief introduction to the extended SSA. For detailed mathematical aspects, please refer to 
Ji et al. (2023). Given a time series 𝒙 = {𝑥௜ ∣ 1 ≤ 𝑖 ≤ 𝑁}, where 𝑥௜ is the 𝑖th element and 𝑁 is the length of 𝒙, we can 
form the trajectory matrix using a specified window size 𝐿, 

𝑿 = ൦

𝑥ଵ 𝑥ଶ ⋯ 𝑥௜ାଵ ⋯ 𝑥௄

𝑥ଶ 𝑥ଷ ⋯ 𝑥௜ାଶ ⋯ 𝑥௄ାଵ

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥௅ 𝑥௅ାଵ ⋯ 𝑥௜ା௅ ⋯ 𝑥ே

൪ (1) 

with 𝐾 = 𝑁 − 𝐿 + 1. If the time series 𝒙 contains missing data, the lag-covariance matrix 𝑪 can only be constructed using 
the available data, 

𝑪 = ൦

𝑐(0) 𝑐(1) ⋯ 𝑐(𝐿 − 1)

𝑐(1) 𝑐(0) ⋱ ⋮

⋮ ⋮ ⋱ 𝑐(1)

𝑐(𝐿 − 1) ⋯ ⋯ 𝑐(0)

൪ (2) 

with the element 𝑐(𝑗) computed by, 

𝑐(𝑗) =
1

𝑁௝

෍ 𝑥௜𝑥௜ା௝

௜ஸேି௝

    𝑗 = 0,1,2, ⋯ , 𝐿 − 1 (3) 

where both 𝑥௜ and 𝑥௜ା௝ must be observed rather than missed, and 𝑁௝ is the number of the products of 𝑥௜ and 𝑥௜ା௝ within 
the sample index 𝑖 ≤ 𝑁 − 𝑗. By performing the eigenvalue decomposition (SVD) on 𝑪, we have, 

𝑪 = 𝑽𝜦𝑽் (4) 
where 𝑽  is an 𝐿 × 𝐿  orthogonal eigenvector matrix, 𝜦  is the diagonal matrix comprised with the eigenvalues 
𝜆௜  (1 ≤ 𝑖 ≤ 𝐿) sorting in descending order. With the elements of 𝑽 and 𝑿, one can reconstruct the time series at different 
scales. Ji et al. (2023) formulated the projection from the original time series to the reconstructed components (RCs) in 
matrix form as, 

𝑹𝑪௞ = [𝑅𝐶ଵ
௞ 𝑅𝐶ଶ

௞ ⋯ 𝑅𝐶ே
௞]் = 𝑩௞𝒙 (5) 

where 𝑹𝑪௞ represents the 𝑘th RC, 𝑩௞ is an 𝑁 × 𝑁 projection matrix whose elements solely dependent on the elements 
of  𝑽. One may refer to Ji et al. (2023) for detailed instructions on constructing 𝑩௞. The RCs corresponding to the larger 
eigenvalues represent the signals, while those associated with the smaller eigenvalues represent the noise. Suppose that 
the first leading 𝑑 RCs represent the signals as 𝒔 and the remaining RCs are residuals as 𝒆, we have, 

𝒔 = 𝑩𝒙 = 𝑩ଵ𝒙ଵ + 𝑩ଶ𝒙ଶ (6) 
𝒆 = 𝑫𝒙 = 𝑫ଵ𝒙ଵ + 𝑫ଶ𝒙ଶ (7) 

where 𝑩 = ∑ 𝑩௞ௗ
௞ୀଵ   and 𝑫 = 𝑰ே − 𝑩; 𝒙ଵ = {𝑥௜ ∣ 𝑖 ∈ 𝑆} and 𝒙ଶ = ൛𝑥௜ ∣ 𝑖 ∈ 𝑆ൟ are the available data and missing data in 

𝒙, 𝑆 and 𝑆 are the index sets of available data and missing data, respectively;  𝑩ଵ and 𝑩ଶ are the sub-matrices of 𝑩 with 
the column vectors related to the available epochs and missing epochs, 𝑫ଵ and 𝑫ଶ are the sub-matrices of 𝑫 composed 
of the column vectors related to the available epochs and missing epochs, respectively. The missing data 𝒙ଶ in time series 
can be estimated by minimizing the quadratic norm of 𝒆, i.e.,  

𝒙ෝ𝟐 = argmin
𝒙𝟐

: 𝒆𝑻𝒆 = − (𝑫ଶ
்𝑫ଶ)ିଵ𝑫ଶ

்𝑫ଵ𝒙ଵ (8) 

If the formal errors of time series are provided, they should be taken into account. Suppose the formal error for 𝑥௜ is 𝜎௜, 
then we can derive the weighted estimates of 𝒙ෝଶ with, 

𝒙ෝ𝟐 = argmin
𝒙𝟐

: 𝒆𝑻𝑷𝒆 = − (𝑫ଶ
்𝑷𝑫ଶ)ିଵ𝑫ଶ

்𝑷𝑫ଵ𝒙ଵ (9) 

where 𝑷 is the diagonal weight matrix with the diagonal elements given by, 

𝑝௜ = ൜
𝜎଴

ଶ 𝜎௜
ଶ⁄ 𝑖 ∈ 𝑆

1 𝑖 ∈ 𝑆
(10) 

By substituting Eq. (8) or Eq. (9) into Eq. (6), we can obtain the signals. The missing data can be interpolated with the 
values of 𝒔 in the corresponding epochs. 
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3. EXPERIMENTS AND RESULTS ANALYSIS 

The RL06 mascon products (0.25° × 0.25°), developed by the Center for Space Research (CSR), are used in this study. 
The research area includes Qinghai-Tibet Plateau (TP) and Yangtze River Basin (YRB). The period covered is from April 
2002 to December 2022. Figure 1 presents the mass anomaly time series of TP and YRB areas, in equivalent water storage 
(EWH) form (top row), associated with their power spectrums (bottom row) computed with the Lomb-Scargle algorithm. 
It shows that the time series contains a noticeable long-term trend, annual oscillations, and other smaller periodical 
oscillations. Before applying the ESSA approach to extract these signals, it is necessary to determine the approximate 
window size. There is no universally accepted criteria for determining the window size. Golyandina (2010) recommended 
that the window size be proportional to the period, but not exceed half the length of the series. In this study, we have 
opted for a window size of 24 months, which is twice the annual period. Figure 2 presents the w-correlations between the 
first leading 24 RCs and the corresponding variance contribution percentage of the associated PCs. The findings indicate 
that when 𝑖, 𝑗 > 5, the correlations between the neighbouring 𝑅𝐶௜ and 𝑅𝐶௝ are relatively small, and the first 5 leading PCs 
capture 93.4% and 88.2% variance. Therefore, the reconstruction order is chosen as 5. Figure 3 presents the first leading 
5 RCs, in which RC1 represents the long-term trend, RC2 and RC3 represent the annual signal, RC4 and RC5 represent 
the semi-annual signal, respectively. We then reconstruct the time series by summarizing RC1 ~ RC5 and interpolate the 
missing data using the elements of reconstructed signals in missing epochs. The interpolated results are depicted in Fig. 
4, from which we observe that the interpolated data aligns well with the available observations. 

We compare the ESSA approach with the ISSA approach (Shen et al., 2015), another SSA-based method to directly 
handle incomplete time series. To evaluate the effectiveness of these two approaches, we compute the fitting errors  𝜎ො 
and RMS ratios  𝑟̂ of the extracted signals over residuals with Eq.(11) and Eq.(12), 

𝜎ො = ඨ
1

𝑁ௌ

෍(𝑥௜ − 𝑠௜)ଶ

௜∈ௌ

(11) 

𝑟̂ = ඨ෍ 𝑠௜
ଶ

௜∈ௌ

ඨ෍(𝑥௜ − 𝑠௜)ଶ

௜∈ௌ

൙ (12) 

where 𝑁ௌ is the length of available data, 𝑥௜ and 𝑠௜ are the 𝑖th element of 𝒙 and 𝒔. A smaller fitting error or a larger RMS 
ratio indicate a stronger extraction of signals. For TP area, the fitting errors and RMS ratio are 0.7109 cm and 4.8729 for 
ESSA approach, and 0.7213 cm and 4.7738 for ISSA approach. For YSB area, the fitting errors and RMS ratio are 1.4753 
cm and 2.9481 for ESSA approach, and 1.4931 cm and 2.8977 for ISSA approach. To intuitively compare the two 
approaches, we analyze the time series of each point in regional grid. Due to space limitations, we only present the 
computed results for TP area. Figure 5 presents the fitting errors and RMS ratios for the two approaches, where (a) and 
(b) represent for 𝜎ොாௌௌ஺ and 𝑟̂ாௌௌ஺, respectively, while (c) and (d) represent for the corresponding improvements of ESSA 
over ISSA in reducing fitting error (𝜎ොூௌௌ஺ − 𝜎ොாௌௌ஺) 𝜎ොூௌௌ஺ × 100%⁄  and enhancing RMS ratio (𝑟̂ாௌௌ஺ − 𝑟̂ூௌௌ஺) 𝑟̂ூௌௌ஺⁄ ×
100%, respectively. Figure 6 presents the linear trend, annual and semi-annual amplitudes derived by least squares fitting 
of each time series of grid point. The results indicate that while the ESSA method is slightly inferior to the ISSA approach 
in a few areas with less significant signals, it significantly outperforms ISSA in regions with stronger signals. The mean 
and maximum improvements in terms of fitting errors are 2.87% and 22.03%, respectively, and in terms of RMS ratios 
are 5.10% and 34.72%. To further compare the two approaches, we conduct 500 simulations. In each simulation, we 
regard the signals extracted by the ESSA approach from real data as true signals 𝒔, and then generate random noise 𝒆 
with zero mean and unit weight variance derived from the real data. As a result, we obtain the full noisy time series 𝒙 =
𝒔 + 𝒆. We delete the time series according to the locations of missing epochs in real data. Since the true signals are 
available here, we can use Eq. (13) to calculate the root mean square errors (RMSEs) of the extracted signals,  

𝑅𝑀𝑆𝐸 = ඨ
1

𝑁ௌ

෍(𝑠௜ − 𝑠௜)ଶ

௜∈ௌ

(13) 

The results are presented in Fig.7. It is evident from the results that the signals obtained through the ESSA approach are 
closer to those obtained through the ISSA approach. The average RMSE is reduced from 0.3433 cm for ESSA to 0.3299 
cm for ISSA, representing a reduction of 3.90%. 

Since the CSR mascon solutions do not provide the formal errors, we construct the mascon equation based on the point-
mass methodology (Forsberg, 2007; Baur & Sneeuw, 2011). The ITSG-Grace2018 and ITSG-Grace_op spherical 
harmonic coefficients (SHCs) products are used since they have achieved state-of-the-art performance among existing 
solutions. They also provide the full covariance matrices of the SHCs, which are essential in point-mass inversion 
modelling (Chen et al., 2016). The study area is TP and a rectangle grid with 1° × 1° is constructed. The period is from 
April 2002 to December 2022. The point-mass modelling employs a linear equation to relate gravitational disturbances 
in space derived from GRACE/GRACE-FO SHCs to the variations of individual point-mass on the Earth’s surface (Baur 
& Sneeuw, 2011). Since the equation is typically ill-posed, the Tikhonov regularization approach is commonly utilized 
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to solve for the mass anomalies. The square roots of the diagonal elements of the mean square error (MSE) matrix are 
considered as the formal errors of the solutions. We then apply weighted ESSA to filter the mass anomaly time series, 
considering the formal errors, and compare the fitting errors and RMS ratios with those by unweighted ESSA. The 
statistical results are presented in Fig.8, where panels (a) and (b) denote the fitting errors for ISSA and ESSA, panels (c) 
and (d) denote the RMS ratios for ISSA and ESSA, respectively. The results clearly show that considering formal errors 
can enhance the filtering process. Compared to the unweighted ESSA, the fitting error for ESSA is reduced by an average 
of 21.81%, while the RMS ratio is improved by an average of 27.18%. Similar to the unweighted case, we carry out the 
simulation experiments. In each simulation, the random errors are generated under the normal distribution with zero mean 
and a diagonal variance matrix with the squares of the formal errors. The computed RMSEs with Eq. (13) are presented 
in Fig.9. The results show that the weighted ESSA approach performs better than the ESSA approach, with the RMSE of 
extracted signals reduced by an average of 1.24% and a maximum of 5.10%. 

 
Figure 1. The mass anomaly time series and power spectrums of the TP area and YRB area. (a) and (b): mass 

anomaly time series. (c) and (d): power spectrums 
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Figure 2. The w-correlations of the first 24 leading RCs (top row) and the variance contribution percentage of the 

associated PCs (bottom row) 
 

 
Figure 3. The first leading 5 reconstructed components 
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Figure 4. The interpolated data in mass anomaly time series 

 

 
Figure 5. The fitting errors  𝜎ො and RMS ratios  𝑟̂. (a): 𝜎ොாௌௌ஺, (b):  𝑟̂ாௌௌ஺, (c): (𝜎ොூௌௌ஺ − 𝜎ොாௌௌ஺) 𝜎ොூௌௌ஺ × 100%⁄ , (d): 

(𝑟̂ாௌௌ஺ − 𝑟̂ூௌௌ஺) 𝑟̂ூௌௌ஺⁄ × 100% 
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Figure 6. The linear trend, annual amplitude, and semi-annual amplitude. (a): linear trend, (b): annual amplitude, (c): 

semi-annual amplitude. 
 

 
Figure 7. RMSEs of signals extracted by ISSA and ESSA approaches for 500 simulations  
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Figure 8. Fitting errors and RMS ratios. (a) and (b) are the fitting errors for ISSA and ESSA, respectively, (c) and (d) 

are the RMS ratios for ISSA and ESSA, respectively. 
 

 
Figure 9. RMSEs of signals extracted by ESSA and weighted ESSA approaches for 500 simulations. 

 
 
4. CONCLUSIONS 

The monthly mass anomaly time series, derived from GRACE/GRACE-FO time-variable gravity fields, contains 
missing values and exhibits visible heterogeneity inherited from the Level-2 spherical harmonic coefficients. We 
introduce the ESSA approach to extract the deterministic signals, including long-term trends, annual and semi-annual 
oscillations, from incomplete and heterogeneous mass anomaly time series. Real data analysis in the TP and YSB areas 
demonstrates the ESSA approach's applicability for signal extraction and filling in data gaps in time series. We also 
compare the ESSA approach with the ISSA approach using real and synthetic time series. The comparison shows that the 
ESSA approach outperforms the ISSA approach. In addition, we find that considering the formal errors can further 
improve the filtering process. 
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